
Chapter Nine: Displaying Images

157

Lesson Four: Launcher Icons, Button Images, and Activity Backgrounds

Images can be used several additional ways inside an Android application. In this lesson, you’ll learn how to
configure application icons, button images, and backgrounds for your activity screen.

Launcher Icons

Every program has a launcher icon. This is image identifies your program in the application
launcher on the device. When you create a new project, you receive a default icon of a little
Android. While this is a cute image, it’s not very descriptive of your application. If you are
writing a program for Google Play, you should make a more creative image that better
describes or “brands” your program. What should your icon look like? It’s your decision,
although you should follow some common rules:

 Don’t include the name of your application in the image. The application launcher will write the name
of your program under the icon automatically.

 Make sure your icon is crisp and colorful so that it stands out on any background.
 Don’t make your icon needlessly complicated. Regardless of the screen density, the icon will be

relatively small on the device. Tiny details on a small image never turn out very well.
 Take your time when creating this icon. It is the first impression for your application. Make it count!

The Android team has come up with many other tips and tricks for creating great launcher icons. You can
check out http://developer.android.com/design/style/iconography.html or search online for “android
launcher icon design”. Once you settle on a design for your application icon, you will need to create three or
four versions: one for each of the screen densities that you are targeting. Here are the overall sizes for the
different densities:

 Low Density (ldpi) – 36 pixels x 36 pixels
 Medium Density (mdpi) – 48 pixels x 48 pixels
 High Density (hdpi) – 72 pixels x 72 pixels
 Tablets (xhdpi) – 96 pixels x 96 pixels

Each image should be added to the corresponding drawable directory in your project. By default, the launcher
icon image is called “ic_launcher.png”, but you can select a different name in the “AndroidManifest.xml” file.
To change the name, open the XML and find the <Application> tag. You can change this attribute to any
other valid drawable resource in your project:

android:icon="@drawable/ic_launcher"

TeenCoderTM: Android Programming

158

How do you test your new launch icons in the emulator? Once you load your application into the
emulator, you can exit it with the back arrow key. Then click on the application grid at the bottom
to see a list of all installed applications and launch icons, including your own.

The ImageButton Control

ImageButtons are like regular buttons that allow you to display an image on the button
instead of text. This can give your buttons a snazzy style or give button-like functionality to
an image.

To create an ImageButton in your XML layout file, add the following code:

<ImageButton
 android:id="@+id/MyImageButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/snowflake" />

Notice that this definition is very similar to the plain Button control. The only real difference is the addition
of the “android:src” attribute, which points to a drawable image in your project. In addition to one static
image selected in the layout, you can also choose to use different images on the button, depending on the
state of the button. For example, you can have one image for the normal button, another image which shows
that the button has focus and yet another to show that the button is being pressed down on the screen.

To add multiple button images, you will need to create a selector XML file in one of your “drawable” folders.
The XML file should contain a <selector> root element and one or more child <item> elements. Each
<item> can contain a “state” attribute such as “android:state_pressed” or “android:state_focused” and a
corresponding “android:drawable” attribute with the drawable ID.

<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">

<item android:state_pressed="true"
 android:drawable="@drawable/button_pressed" />
<item android:state_focused="true"
 android:drawable="@drawable/button_focused" />
<item android:drawable="@drawable/button_normal" />

</selector>

Put the <item> element for the normal button (without any special state attributes) last in the file, so it will
be the default image if none of the <item> states above it matches the current button condition. Then save
your XML file with any valid filename such as “button_selector.xml”.

Chapter Nine: Displaying Images

159

Once this file is saved in a project, you can use it as your ImageButton’s “android:src” attribute in the
activity’s XML layout file:

android:src="@drawable/button_selector"

The ImageButton will then use the images listed in
the selector XML to choose the correct picture to
display depending on the current state of the
ImageButton. Our snowflakes now have normal
(left), focused (middle), and clicked (right) images.

Activity Backgrounds

You can also use an image as the background of a
layout. This might be useful if you are creating a game
program or if you just want to add a little extra style to
your application. To select an image resource as the
background of a layout, add the “android:background”
attribute to your layout element. For example, here we
have added an image called “bg.png” as the background
of a LinearLayout that covers the entire screen:

<LinearLayout
 ...
 android:background="@drawable/bg"
 ...
</LinearLayout>

You will then see the image appear behind any other
controls or views on the screen.

